THE FRAUNHOFER IWU PROFILE

Profile of the Fraunhofer IWU

Research under the heading "Resource-Efficient Production"

- Founded Juli 1st 1991
- Currently approx. 530 employees
- Approx. € 40 million annual budget
- Locations: Chemnitz (headquarters) Dresden, Zittau, Wolfsburg, Leipzig
- 3 scientific fields:

Profile of the Fraunhofer IWU

Human resources

500 400 300 200 100 0 13 14 15 16 17

Mitarbeiterentwicklung 2013–2017

	2013	2014	2015	2016	2017
Scientists	211	228	251	248	264
Administration and technical staff	102	104	114	113	118
Student assistants	160	196	164	160	177
= Employees	473	528	529	521	559

Profile of the Fraunhofer IWU Finances

Betriebshaushalt 2013-2017

Operating budget 2013 - 2017

	2013	2014	2015	2016	2017
Industrial income	14,3	15,6	16,2	14,7	15,0
Public income (Federation and countries)	7,2	7,7	6,8	8,3	10,9
Research funding / other	2,4	2,7	3,1	3,3	3,1
Institutional funding	5,9	7,6	9,0	10,0	9,2
= Operating budget in million €	29,8	33,6	35,1	36,3	38,2

Profile of the Fraunhofer IWU Advisory Board

Chair

Prof. H. Waltl, AUDI AG

Members

- Prof. Reinhold Achatz, thyssenkrupp AG
- Dr. Stephan Arnold, Europäische Forschungsgesellschaft f
 ür Blechverarbeitung e.V.
- Bernhard Beck, VERITAS AG
- Walter Fust, StarragHeckert Holding AG, Schweiz
- Dr. Gunnar Grosse, DEROSSI Invest GmbH
- Prof. Jochem Heizmann, Volkswagen AG
- Wilfried Jakob
- Klaus Löffler, Trumpf GmbH & Co. KG
- Dr. Gyula de Meleghy, Meleghy Automotive GmbH & Co. KG
- Prof. Hans J. Naumann, NILES-SIMMONS Industrieanlagen GmbH
- Prof. Konrad Wegener, ETH Zürich, Schweiz
- MinRat Christoph Zimmer-Conrad, SMWA

© Fraunhofer IWU

Profile of the Fraunhofer IWU **Research** locations

72 institutes and research institutes at locations in Germany

Profile of the Fraunhofer IWU Location Chemnitz

Chemnitz

- Chemnitz is a traditional location for Mechanical Engineering
 - Campus of the IWU includes more than 9500 m² area in the immediate proximity to the TU Chemnitz
- Research and development of materials and energyefficient technologies and products
 - Testing fields for the areas Forming Technology, Machine Tools, Production Systems and Machining, Cutting and Micro-Technology, Mounting, Robotics, Lightweight Construction and Production Management
 - E³-Forschungsfabrik Resource-Efficient Production for the development of holistic solutions for the production of tomorrow
 - Virtual-Reality Technical Center for using virtual technologies in research and teaching

Profile of the Fraunhofer IWU Location Dresden

Dresden

- Dresden is Germany's city with the greatest concentration of research facilities
 - Institute location with 1000 m² technical equipment in the immediate proximity to the TU Dresden
- Research and development of materials and energyefficient technologies and products
 - Main emphases are Adaptronics, Acoustics, Functionally Integrated Lightweight Construction, Additive Manufacturing, Mechanical Joining Technology, Medical Engineering as well as Cyber-Physical Production Systems
 - Anechoic room for acoustic studies on machines, vehicles and equipment

Profile of the Fraunhofer IWU Fraunhofer Plastics Technology Center Oberlausitz

- Region Zittau with a multitude of companies of the plastics processing industry
 - Location in the immediate proximity to the Zittau / Görlitz College with modern technical center
- Development of innovative technologies and products for the plastics processing industry with focus on lightweight construction
 - Main research emphases are Additive Manufacturing of Plastic Components, Development of Functionally Integrated Plastic Components and Semi-Finished Products of Continuous Fiber-Reinforced Thermoplastics as well as Elastomer Processing
 - Knowledge and technology transfer into the region

Profile of the Fraunhofer IWU Joint Labs

Profile of the Fraunhofer IWU Jobs and careers: discover your future with us!

WHO WE ARE LOOKING FOR:

- Experienced professionals, professional newcomers, students and managers
- Lateral thinkers with new ideas
- Motivation and self-initiative in the development of visionary technical solutions
- Studies in the field of Engineering, Technology or IT/Computer Sciences
- Good skills in German and English

WHAT WE OFFER:

- Practical approach and the possibility of obtaining the doctorate degree
- State-of-the-art technical equipment
- Exchange with professional colleagues
- Opportunities for personal development
- Targeted staff development and various offers for qualification
- Remuneration according to TVöD incl. variable remuneration components
- Work-life balance due to flexible working hours

Profile of the Fraunhofer IWU Scientific fields

Mechatronics and Lightweight Structures

Prof. Dr.-Ing. Welf-Guntram Drossel

Forming Technology

Prof. Dr.-Ing. Reinhard Mauermann

Machine Tools, Production Systems and Machining

Prof. Dr.-Ing. Matthias Putz

Fraunhofer Inst	itute for Machine ⁻	ools and Forming	J Technology IWU		
Board of DirectorsProf. WG. Drossel (executive)Prof. R. MauermannProf. M. Putz					
Scientific Field Mechatronics and Lightweight Structures Prof. WG. Drossel	Scientif Forming To Prof. R. M	ic Field echnology auermann	Scientific Field Machine Tools, Production Systems and Machining Prof. M. Putz		
Division Mechatronics	Division Media-Based Forming & High-Velocity Technologies		Division Production Systems and Machines		
Division Functional Integration / Lightweight Design	Division Sheet Metal Forming & Fundamentals		Division Smart Factory – Digitization and Automation		
Division Textile Lightweight Design			Division Machining and Removal		
Division Joining					
Division Cyber-Physical Production Systems					
	Strategy and Int	ernational Affairs			
Business Development		ent Public Relations			
	Services				
Technical Services	Research Technology		Administration		

© Fraunhofer IWU

13

Archivierungsan

Mechatronics and Lightweight Structures

Prof. Dr.-Ing. Welf-Guntram Drosse

Mechatronics	Functional Integration / Lightweight Design	Textile Lightweight Design	Joining	Cyber-Physical Production Systems
Adaptronics	Functionally Integrated Lightweight Construction	Systems and Technologies for Textile Structures	Thermal Joining	Technical Cybernetics
Medical Engineering	Additive Processes	Applied Plastics Technologies	Mechanical Joining	Data Chains and –analyses in Production
Project House smart ³				
Acoustical Engineering				

Forming Technology

Prof. Dr.-Ing. Reinhard Mauermann

	>	
2		

Media-Based Forming and High-Velocity Technologies	Sheet Metal Forming and Fundamentals
Media-Based Forming	Fundamentals in Sheet Metal Forming
High-Velocity Technologies	Sheet Metal Forming

Machine Tools, Production Systems and Machining

Prof. Dr.-Ing. Matthias Putz

Production Systems and Machines	Smart Factory Digitisation & Automation	Machining and Removal
Machine Tools	Factory of the Future	Cutting Technology
Car Body Construction and Assembly	Digitization in Production	Functional Surfaces / Microsystems Manufacturing
Robotics	Automation and Monitoring	
	Project Center LIM (Labor, Innovation and Management)	

Division Sheet Metal Forming

Frank Schieck

© Fraunhofer IWU

Archivierungsangab

Division Sheet Metal Forming Strategic Orientation

integrated in IWU general strategy E³ - Production

Material Characterization and Determination of **Parameters**

Our Expertise

- Determination of mechanical-physical material parameters
- Determination of thermal-physical material parameters
- Characterization of the material behavior of metal sheets
- Determination of technological material parameters
- Investigation of the tribological behavior and the frictional behavior
- Analysis of dimensional change in solid and sheet metal components
- Investigations by using radiography
- Metallographic investigations
- Measurement of roughness and hardness

Tensile compression test

Biaxial tensile test

Uniaxial tensile test Maxi bulge test **Tensile compression test Biaxial tensile test**

 σ_{u}

 σ_{r}

Flow Locus

© Fraunhofer IWU

19

Simulation

Our Expertise

Simulation of

- Processes of sheet metal forming (e.g. deep drawing, bending, embossing)
- Hydro forming processes (e.g. hydroforming of blanks and profiles, gas forming)
- Tempered forming processes (e.g. hydroforming, press hardening)
- Cutting technologies (e.g. shearing, fine blanking, precision cutting)

Consideration of Phenomena

- Springback
- Thermal effects
- High velocity effects
- Occurrence of failure

Utilization of software

springback analysis and tool compensation

tool design for temperec forming processes

technology design for press hardening processes

process design of hydroforming component (bending, preforming, hydroforming)

Deep Drawing & Stretch Forming of Blanks

Our Expertise

- Methods planning and simulation based process layout for different blank materials:
 - Steel
 - Aluminum
 - Magnesium
 - Titanium
 - Hybrid Metal-Polymer Compounds
 - Organic Blanks
 - Tailored Blanks
- Tool layout and Design
- **Experimental Investigations** and **Tryout**
- Manufacturing of Prototypes and Pre Series
- Controlled (intelligent) Forming processes
 - Analysis of Process Chains and Technology Optimization

Street light housing Aluminum (6000er)

Inner door Magnesium Tailored Blank (AZ 31)

16 000 kN hydraulic Tryoutpress

Incremental Sheet Metal Forming

Our Expertise

- Part dimensions up to
 - 4,000 x 3,000 x 500 mm³ (cold)
 - 2,000 x 1,000 x 500 mm³ (up to 250°C)
- Sheet thicknesses of up to 2.5/5 mm (St/Al)
- Machine tool "Dynapod" for mandrel movement
- Rolling of or rotating mandrels
- Utilization of variable clamping frames
- Investigation of various sheet metal materials
 - Steel alloys
 - Aluminum alloys
 - Magnesium alloys
 - Composite sheet metal
 - Copper alloys
 - •
 - Utilization of partial or full male molds

incrementally produced canal structure

incrementally produced bead

stylus in forming

Roll Forming

Our Expertise

- Design of roll forming processes (flower design, process parameters)
- Protection of process stability by using FE methods
- Experimental investigations on testing facility (manufacturer Schuler, 9 forming stands, modular setup)
- Optical detection of geometry and validation of the simulation results
- Local or global tempering for extending the forming limits
- Controlled temperature guide

Roll forming machine at the IWU

Process developement using FEM

Temperature support

process design (flower diagram)

Cutting Technologies

process monitoring technology by thin layer sensors

Our Expertise

Simulation

Cutting simulation by using DEFORM, Abaqus and LS-Dyna

Technology

- Shearing
- Fine blanking and precision cutting
- High speed shearing (HSIC)

Tools

- Design of cutting tools
- Alternative tool materials and coatings

Process monitoring

- Development, testing and optimization of sensors based on force sensor coatings
 - Online process monitoring in cutting processes

Process Monitoring

Our Expertise

Combinable 100% - Strategies

- Permanent **material control** by tool-integrated mini-bulge test
 - Every blank is checked for characteristic parameters (according to DIN or own requirements)
- Monitoring of the tool by sensors
 - Using of piezo sensors and sensors for structure-born noise
 - Determination of failures of tool and components during every strok

Optical InLine control of finished parts

- Checking for necking, cracks, impressions, etc. for every component on the output conveyor
- Geometry monitoring (control of holes, target geometry...) implementable by CAD models
- Central database for storing all production data

material-InLine Test

piezo sensors and sensors for structure-born noise

optical InLine control of finished parts

Hot Sheet Metal Forming– Press Hardening

Our Expertise

- Manufacturing strategies for components with customized properties
- Physical investigations of the materials
- Analysis of technological material parameters
- Tribological investigations
- Simulation of the forming process
 - Thermo-mechanically coupled forming simulation
 - Structure simulation
 - Flow simulation
- Planning of process chains and **methods** for hot sheet metal forming
 - Determination of optimal process parameters
 - Feasibility analysis
- Development of tool concepts and implementation into the design
- Evaluation of **energy and resource efficiency** of processes and process chains

Temperature supported tensile test

Press hardening

Prototyping B-pillar base

Fully automated test set up for press hardening of car body parts

Tool Concepts – Forming / Cutting Tools

Our Expertise

- Method planning and tool design for forming and cutting tools
- FE calculation of forming and cutting processes

- Design of warm cutting tools
- FE calculation and optimization of the required tool cooling in tempered sheet metal forming (forming and cutting processes)
- Design of active components using hybrid construction with cooling adapted to the contour for hot forming tools (manufacturing of active components using laser melting)
- Design of active components appropriate for load of cutting dies for tempered steel

Media based Forming technologies

Our Expertise

- Design of component and process for:
 - Conventional hydroforming and IHB
 - Hydrothermal forming
 - Hot-Metal-Gas-Forming
- Development of technologies with integrated heat treatment (HMGF of stainless steel, form hardening based on active media)
- Design and application of induction (and magnetic) heating equipment for component integrated into the tool or added externally
- Process development for innovative materials (steels for hot stamping, stainless steels, superplastic Aluminum, Magnesium, Titanium)
- Investigation of sensors for process monitoring

crash-resistant head rest bracket

hydroforming distribution beam

hydroforming tool door frame

flangeless B-pillar

Temperature supported Hydroforming

Our Expertise

- Further development of the forming processes based on active media, considering the temperature as a process parameter
 - Saving of intermediate annealing operations and preforming stages
 - Process-integrated heat treatment
 - Reduction of the forming
 - Forming of Aluminum, Magnesium, steel, Titanium and plastics
- Development of tool and process
 - Ensuring the required temperature gradients for the forming and cooling down stages in the tool
- Development of process combinations
 - Hydroforming & press hardening
 - Hydroforming & superplastic forming

hot formed components

.

Gas Forming of ferritic stainless steel tubes

Electromagnetic Forming - EMF

Our Expertise

- Analysis and **design of the multi-physical process**
- Production-oriented component design
- Design of process combinations and process chains
 - Deep drawing with integrated EMF
 - Electromagnetic joining with subsequent hydroforming
- Design of joining and cutting operations
- Simulation of the forming and joining process
 - Electromagnetic and structural mechanically coupled simulation
 - Simplified highly efficient simulation strategies
 - Numerical determination of the compound strength in joining
- Development and implementation of tool concepts
 - Inductors
 - Fieldshapers
 - Dies

pulsed power generator for EMF

EMF formed door handle cavity

EMF formed reinforcement part

Archivieru

Thank you for your attention!

